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5.18 SUMMARY

In this chapter we have reviewed some of the important language features that might
influence our choice of a language for writing real-time software. Particular
attention has been paid to elements of languages that contribute to the security of
the resulting software. We have not attempted to compare real-time languages; if
you are interested in such comparisons you will find a brief survey in Cooling (1991)
and a more extensive survey in Tucker (1985). For a greater in-depth study of real-
time languages see Young (1982) and Burns and Wellings (1990).

EXERCISES

5.1 Define the scope and visibility of the variables and parameters in the following code:

MODULE MyProgram;
VAR A,B:REAL;
C,D:INTEGER;
PROCEDURE Pone ( A1:REAL; VAR A2:REAL};
VAR M,N:INTEGER
BEGIN (* Pone ™)

END Pone
PROCEDURE Ptwo;
VAR P,D:INTEGER;
Q,R:REAL;
BEGIN (* TWO *)

Pone (Q,R);

END Ptwo;
BEGIN (*MyProgram™’

END MyProgram.
5.2 In the computer science literature you will find lots of arguments about *global’ and
‘local’ variahles. What guidance would you give to somebody who asked for advice
on how to decide on the use of global or local variables?

5.3 How does strong data typing contribute to the security of a programming language?

5.4 Why is it useful to have available a predefined data type BITSET in Modula-2? Give
an example to illustrate how, and under what circumstances, BITSET would be used.
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Operating Systems

This chapter is not a complete discussion of operating systems. In it we concentrate
on the aspects of operating systems that are particularly relevant to real-time control
applications. We first look at what they are, how they differ from non-real-time
operating systems and why we use them. We will then €xamine in-some detail how
they handie the management of tasks. Finaily, we will look briefly at some ways of
implementing real-time operating systems.

The aims of the chapter are to:

Explain why we use a real-time operating system (RTOS).

Explain what an RTOS does.

Explain how an RTOS works.

Describe the benefits and drawbacks of an RTOS.

List the minimum language primitives required for creating an RTOS.
Describe the problem of sharing resources and explain several techniques
for providing mutual exclusion.

Explain what a binary semaphore does and write a program in Modula-2 to
demonstrate its use.

® Describe and explain the basic task synchronisation mechanisms.

6.1 INTRODUCTION

Seftware design is simplified if details of the lower levels of implementation on a
specific computer using a particular language can be hidden from the designer. An
operating system for a given computer converts the hardware of the system into a
virtual machine with characteristics defined by the operating system. Operating
systems were developed, as their name implies, to assist the operator in running a
batch processing computer; they then developed to support both real-time systems
and multi-access on-line systems.

The traditional approach is to incorporate all the requirements inside a general
purpose operating system as illustrated in Figure 6.1, Access to the hardware of the
system and to the 1fO devices is through the operating system. In many real-time
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Figure 6.1 General purpose operating system.

and multi—progrémming systems restriction of access is enforced by hardware and
software traps. The operating system is constructed, in these cases, as a monolithic
monitor. In single-job operating systems access through the operating system js not
usually enforced; however, it is good programming practice and it facilitates
portability since the operating system entry points remain constant across different
implementations. In addition to supporting and controlling the basic activities,
operating systems provide various utility programs, for example loaders, linkers,
assemblers and debuggers, as well as run-time support for high-level languages.

A general purpose operating system will provide some facilities that are not
required in a particular application, and to be forced to include them adds
unnecessarily to the system overheads. Usually during the installation of an
operating system certain features can be selected or omitted. A general purpose
operating system can thus be ‘tailored’ to meet a specific application requirement.

Recently operating systems which provide oniy a minimum kernel or nucleus
have become popular; additional features can be added by the applications
programmer writing in a high-level language. This structure is shown in Figure 6.2.
In this type of operating system the distinction between the operating system and
the application software becomes blurred. The approach has many advantages for
applications that involve small, embedded systems.

The relationship between the various sections of a simple operating system, the
computer hardware and the user is illustrated in Figure 6.3. The command processor
provides a means by which the user can communicate with the operating system
from the computer console device. Through it the user issues commands to the
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Figure 6.2 Minimal operating system.

operating system and it provides the user with information about the actions being
performed by the operating system. The actual processing of the commands issued
by the user is done by the BDOS {Basic Disk Operating System) which also handles
the input and output and the file operations on the disks. The BDOS makes the
actual management of the file and inputfoutput operations transparent to the user,
Application programs will normally communicate with the hardware of the system
through spstem calls which are processed by the BDOS.

The BIOS (Basic Input Qutput System) contains the various device drivers
which manipulate the physical devices and this section of the operating system may
vary from implementation to implementation as it has to operate directly with the
underlying hardware of the computer. For example, the physical addresses of the
peripherals may vary according to the manufacturer; these differences will be
accommodated in the coding of the BIOS.

Devices are treated as logical or physical units. Logical devices are software
constructs used to simplify the user interface; user programs perform input and
output to logical devices and the BDOS connects the logical device to the physical
device. The actual operation of the physical device is performed by software in the
BIOS.

Access to the operating system functions is by means of subroutine cails and
information is passed in the CPU registers .of the machine. Functions cannot be
called directly from most high-level languages and this provides isolation between
the operating system and a programmer using a high-level language. The isolation
is deliberate; it is an example of information hiding. The connection between the
high-level language and the operating system is made by the compiler writer through
the provision of run-time support routines which convert the operating system into
the virtual machine described by the high-level language.
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Figure 6.3 General structure of a simpie operating system.

The isolation is not complete in that it is possible to call assembly-coded
routines from high-level languages and to pass parameters between the high-level
language code and the assembly code; this does, however, require detailed
knowledge of the system. Again information hiding is used in that the details of the
physical implementation on the CPU and of the IJO devices are hidden within the
operating system and hence operations are performed on the operating system
virtual machine.

6.2 REAL-TIME MULTI-TASKING OPERATING SYSTEMS

There are many different types of operating systems and until the early 1980s there
was a clear distinction between operating systems designed for use in real-time
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applications and other types of operating system. In recent years the dividing line
has become blurred. For example, languages such as Modula-2 enable us to
construct multi-tasking real-time applications that run on top of single-user, single-
task operating systems. And operating systems such as UNIX and OS/2 support
multi-user, multi-tasking applications.

Confusion can arise between multi-user or multi-programming operating
systems and multi-tasking operating systems. The function of a multi-user Operating
system is illustrated in Figure 6.4: the operating system ensures that each user can
run a single program as if they had the whole of the computer system for their
program. Although at any given instance it is not possible to predict which user will
have the use of the CPU, or even if the user’s code is in the memory, the operating
system ensures that one user program cannot interfere with the operation of another
user program. Each user program runs in its own protected environment, A primary
concern of the operating system is to prevent one program, either deliberately or
through error, corrupting another. In a multi-tasking operating system it is assumed
that there is a single user and that the various tasks co-operate to serve the
requirements of the user, Co-operation requires that the tasks communicate with
each other and share common data. This is illustrated in Figure 6.5. In a good multi-
tasking operating system task communication and data sharing will be regulated so
that the operating system is able to prevent inadvertent communication or data
access (that is, arising through an error in the coding of one task) and hence protect
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data which is private to a task (note that deliberate interference cannot be prevented
— the tasks are assumed to be co-operating).

A fundamental requirement of an operating system is i allocate the resources
of the computer to the various activities which have to be performed. In a real-time
operating system this allocation procedure is complicated by the fact that some of
the activities are time critical and hence have a higher priority than others. Therefore
there must be some means of allocating priorities to tasks and of scheduling
allocation of CPU time to the tasks according to some priority scheme.

A task may use another task, that is it may require certain activities which are
contained in another task to be performed and it may itself be used by another task.
Thus tasks may need to communicate with each other. The operating system must
have some means of enabling tasks either to share memory for the exchange of data,
or to provide a mechanism by which tasks can send messages to each other. Also
tasks may need to be invoked by external events and hence the operating system
must support the use of interrupts. Similarly tasks may need to share data and they
may require access to various hardware and software components; hence there has
to be a mechanism for preventing two tasks from attempting to use the same
resource at the same time.
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In summary a real-time multi-tasking operating system has to support the
resource sharing and the timing requirements of the tasks and the functions can be
divided as follows:

Task management: the allocation of memory and processor time (scheduling)
to tasks.

Memory management: control of memory allocation,

Resource control: control of all shared resources other than memory and CPU
time.

Intertask communication and synchronisation: provision of support mechan-
isms to provide safe communication between tasks and to enable tasks to
synchronise their activities.

_ User
System tasks Application tasks
levei
/ } } \
Resource _
allocation Command Inputfoutput File
and processor subsystem | manager
management
Operating Task
system level management
. Interrupt
Real-time up
service
clock .
routines

Hardware level -

Figure 6.6 Typical structure of a real-time operating system.
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In addition to the above the system has to provide the standard features such as
support for disk files, basic input/output device drivers and utility programs. The
typical structure is illustrated in Figure 6.6. The overall control of the system is
provided by the task management module which is responsible for allocating the use
of the CPU. This module is often referred to as the monitor or as the executive
control program (or more simply the executive). At the user level, in addition to
application tasks, a box jabelled ‘system tasks’ is also shown since in many operating
systems some operations performed by the operating system and the utility
programs run in the memory space allocated to the user or applications — this space
is sometimes called ‘working memory’.

. From the user’s viewpoint the two most important features of task management
are how to create a task, that is maké its existence known to the RTOS, and what
scheduling strategy or strategies the RTOS supports. Task creation is largely a
function of the interface between the operating system and high-level programming
language and we gave some examples of the mechanisms involved in the previous
chapter.

6.3 SCHEDULING STRATEGIES

If we consider the scheduling of time allocation on a single CPU there are two basic
strategies:

1. Cyclic.
2. Pre-emptive.

8.3.1 Cyclic

The first of these, cyclic, allocates the CPU to a task in turn. The task uses the CPU
for as long as it wishes. When it no longer requires it the scheduler allocates it to
the next task in the list. This is a very simple strategy which is highly efficient in that
it minimises the time lost in switching between tasks. It is an effective strategy for
small embedded systems for which the execution times for each task run are
carefully calculated (often by counting the number of machine instruction cycles for
the task) and for which the software is carefully divided into appropriate task
segments. In general this approach is too restrictive since it requires that the task
units have similar execution times. It is also difficult to deal with random events
using this method.

6.3.2 Pre-smptive

There are many pre-emptive strategies. All involve the possibility that a task will be
interrupted — hence the term pre-emptive — before it has completed a particular
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invocation. A consequence of this is that the executive has to make provision to save
the volatile environment for each task, since at some later time it wil] he allocated
CPU time and will want to continue from the exact point at which it was
interrupted. This process is called context switching and a mechanism for supporting
it is described below.

The simplest form of pre-emptive scheduling is to use a time slicing approach
(sometimes called a round-robin method). Using this strategy each task is allocated
a fixed amount of CPU time — a specified number of ticks of the clock — and at
the end of this time it is stopped and the next task in the list is run. Thus each task
in turn is allocated an equal share of the CPU time. If a task completes before the
end of its time slice the next task in the list is run immediately.

The majority of existing RTOSs use a priority scheduling mechanism. Tasks are
allocated a priority level and at the end of a predetermined time slice the task with
the highest priority of those ready to run is chosen and is given control of the CPU.
Note that this may mean that the task which is currently running continues to run.

Task priorities may be fixed — a static priority system — or may be changed
during system execution — a dynamic priority system. Dynamic priority schemes can
increase the flexibility of the system, for example they can be used to increase the
priority of particular tasks under alarm conditions. Changing priorities is, however,
risky as it makes it much harder to predict the behaviour of the system and to test
it. There is the risk of locking out certain tasks for long periods of time. If the
software is well designed and there is adequate computing power there should be no
need to change priorities — all the necessary constraints will be met. If it is badly
designed and/or there are inadequate computing resources then dynamic allocation
of priorities will not produce a viable, reliable system.

Whatever scheduling strategy is adopted the task management system has to
deal with the handling of interrupts. These may be hardware interrupts caused by
external events, or software interrupts generated by a running task. An interrupt
forces a context switch. The running task is suspended and an interrupt handler is
run. The interrupt handler should oniy contain a small amount of code and should
execute very quickly. When the handler terminates either the task that was
interrupted is restored or the scheduler is entered and it determines which task
should run. The RTOS designer has to decide which approach to adopt.

EXAMPLE 6.1
Interrupt Handling and Scheduling

A system receives an alarm signal interrupt from a plant and in response to the alarm
it is to run an alarm alert task which is a high-priority, base level task. The interrupt
service routine for the alarm signal will, by some mechanism, cause the alarm alert
task to be placed in the runnable queue, and there are then two actions which it can
take: (a) return to the interrupted task, (b} jump to the scheduler. If a return to the
interrupted task is made then the alarm alert task will not be run until the system
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reschedules either at the system rescheduling interval or because the running task
terminates or becomes suspended waiting for a system resource, However, if a jump
is made directly to the dispatcher from the interrupt service routine, then if the
alarm alert task is of higher priority than the interrupted task it will be run
immediately and the interrupted task will have been pre-empted. The argument for
entering the scheduler and rescheduling is that the occurrence of an interrupt is likely
to have changed the state of a task and hence the task that was running may no
longer be the highest-priority task. The argument for returning to the running task
is that it involves less time loss since performing only the context switch requires less
CPU time than running the scheduler as well. A rational decision depends on the
executive having some knowledge of the application: if it is known that the majority
of interrupts are generated by events that have high priority — alarms, or important
changes in plant conditions — then entering the scheduler after an interrupt is the
best choice; on the other hand, if a large number of interrupts are from serial-based
input and output and communications devices that simply involve placing a
character in a buffer then to enter the scheduler every time would be a waste of CPU
time.

6.4 PRIORITY STRUCTURES

In a real-time system the designer has to assign priorities to the tasks in the system.
The priority will depend on how quickly a task will have to respond to a particular
event. An event may be some activity of the process or may be the elapsing of a
specified amount of time. Most RTOSs provide facilities such that tasks can be
divided into three broad levels of priority as shown in Figure 6.7.

1. Interrupt level: at this level are the service routines for the tasks and devices
which require very fast response — measured in milliseconds. One of these
tasks will be the real-time clock task and clock level dispatcher.

3 Clock level: at this level are the tasks which require repetitive processing,
such as the sampling and control tasks, and tasks which require accurate
timing. The lowest-priority task at this level is the base level scheduler.

3. Base level; tasks at this level are of low priority and either have no deadlines
to meet or are allowed a wide margin of error in their timing. Tasks at this
level may be allocated priorities or may all run at a single priority level —
that of the base level scheduler.

6.4.1 Interrupt Level
As we have already seen an interrupt forces a rescheduling of the work of the CPU

and the system has no control over the timing of the rescheduling. Because an
interrupt-generated rescheduling is outside the control of the system it is necessary
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to keep the amount of processing to be done by the interrupt handling routine to
a minimum, Usually the interrupt handling routine does sufficient processing to
preserve the necessary information and to pass this information to a further
handling routine which operates at a lower-priority level, either clock level or base
level. Interrupt handling routines have to provide a mechanism for task swapping,
that is they have to save the volatile environment. On completion the routine either
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Figure 6.7 Priority levels in an RTOS,
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will simply restore the volatile environment and hence will return to the interrupted
task, or it may exit to the scheduler.

Within the interrupt level of tasks there will be different priorities and there will
have to be provision for preventing interrupts of lower priority interrupting higher-
priority interrupt tasks. On most modern computer systems there will be hardware
to assist in this operation (see Chapter 3).

6.4.2 Clock Level

One interrupt level task will be the real-time clock handling routine which will be
entered at some interval, usually determined by the required activation rate for the
most frequently required task. Typical values are 1 to 200 ms. Each clock interrupt
is known as a tick and represents the smallest time interval known to the system.
The function of the clock interrupt handling routine is to update the time-of-day
clock in the system and to transfer control to the dispatcher. The scheduler selects
which task is to run at a particular clock tick.
Clock level tasks divide into two categories:

1. CYCLIC: these are tasks which require accurate synchronisation with the
outside world. '

2. DELAY: these tasks simply wish to have a fixed delay between successive
repetitions or to delay their activities for a given period of time.

6.4.3 Cyclic Tasks

The cyclic tasks are ordered in a priority which reflects the accuracy of timing
required for the task, those which require high accuracy being given the highest
priority. Tasks of lower priority within the clock level will have some jitter since they
will have to await completion of the higher-level tasks.

EXAMPLE 6.2
Cyclic Tasks

Three tasks A, B and C age required to run at 20 ms, 40 ms and 80 ms intervals
(corresponding to 1 tick, 2 ticks and 4 ticks, if the clock interrupt rate is set at
20 ms). If the task priority order is set as A, Band C with A as the highest priority
then the processing will proceed as shown in Figure 6.8a with the result that the tasks
will be run at constant intervals. It should be noted that using a single CPU it is not
possible to have all the tasks starting in synchronism with the clock tick. All but one
of the tasks will be delayed relative to the clock tick; however, the interval between
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Figure 6.8 Task activation diagram for Example 6.2: {a) task priorities A,B,C:
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successive invocations of the task will be constant (if the execution time for each task
is a constant value). If the priority order is now rearranged so that it is C, 4 and
B then the activation diagram is as shown in Figure 6.8b and every fourth tick of
the clock there will be a delay in the timing of tasks 4 and B. In practice there
is unlikely to be any justification for choosing a priority order C, A and B rather
than A4, B and C. Usually the task with the highest repetition rate will have
the most stringent timing requirements and hence will be assigned the highest
priority.

A further problem which can arise is that a clock level task may require a longer
time than the interval between clock interrupts to complete its processing (note that
for overall satisfactory operation of the system such a task cannot run at a high
repetition rate).
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EXAMPLE 6.3
Timing of Cyclic Tasks

Assume that in Example 6.2 task C takes 25 ms to complete, task A takes 1 ms and task
B takes 6 ms. If task C is allowed to run to completion then the activity diagram will
be as shown in Figure 6.9 and task A will be delayed by 11 ms at every fourth invocation.
It is normal therefore to divide the c¢yclic tasks into high-priority tasks which are
guaranteed to complete within the clock interval and lower-priority tasks which can be
interrupted by the next clock tick.
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Figure 6.9 Task activation diagram for Example 6.3.

6.4.4 Delay Tasks

The tasks which wish to delay their activities for a fixed period of time, either to
allow some external event to complete (for example, a relay may take 20 ms to close)
or because they only need to run at certain intervals (for example, to update the
operator display), usually run at the base level. When a task requests a delay its
status is changed from runnable to suspended and remains suspended until the delay
period has elapsed.

One method of implementing the delay function is to use a queue of task
descriptors, say identified by the name DELAYED. This queue is an ordered list of
task descriptors, the task at the front of the queue being that whose next running
time is nearest to the current time. When a task delays itself it calls an executive task
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which calculates the time when the task is next due to run and inserts the task
descriptor in the appropriate place in the queue.

A task running at the clock level checks the first task in the DELAYED queue
to see if it is time for that task to run. If the task is due to run it is removed from
the DELAYED queue and placed in the runnable queue. The task which checks
the DELAYED queue may be either the dispatcher which is entered every time
the real-time clock interrupts or another clock level task which runs at less frequent
intervals, say every 10 ticks, in which case it is then frequently part of the base level
scheduler. Many real-time operating systems do not support the cycle operation and
the user has to create an accurate repetitive timing for the task by using the delay
function.

6.4.5 Base Level

The tasks at the base level are initiated on demand rather than at some predetermined
time interval. The demand may be user input from a terminal, some process event
or some particular requirement of the data being processed. The way in which the
tasks at the base level are scheduled can vary; one simple way is to use time slicing
on a round-robin basis. In this method each task in the runnable queue is selected
in turn and ailowed to run until either it suspends or the base level scheduler is again
entered. For real-time work in which there is usually some element of priority this
is not a particularly satisfactory solution. It would not be sensible to hold up a task,
which had been delayed waiting for a relay to close but was now ready to run, in
order to let the logging task run.

Most real-time systems use a priority strategy even for the base level tasks. This
may be either a fixed level of priority or a variable level. The difficulty with a fixgd
level of priority is in determining the correct priorities for satisfactory operation.
The ability to change priorities dynamically allows the system to adapt to particular
circumstances. Dynamic allocation of priorities can be carried out using a high-level
scheduler or can be done on an ad Aoc basis from within specific tasks. The high-
level scheduler is an operating system task which is able to examine the use of the
system resources; it may for example check how long tasks have been waiting and
increase the priority of the tasks which have been waiting a long time. The difficuity
with the high-level scheduler is that the algorithms used can become complicated and
hence the overhead in running can become significant.

Alternatively priorities can be adjusted in response to particular events or under
the control of the operator. For example, alarm tasks will usually have a high
priority and during an alarm condition tasks such as the log of plant data may be
delayed with the consequence that the output of the log lags behind real time (note
that the data will be stored in buffer areas inside the computer). So that the log can
catch up with real time quickly it may be advisable to increase, temporarily, the
priority of the printer output task.

L4
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6.5 TASK MANAGEMENT

The basic functions of the task management module or executive are:

1. to keep a record of the state of cach task;

2. to schedule an allocation of CPU time to each task; and

3. to perform the context switch, that is to save the status of the task that is
currently using the CPU and restore the status of the task that is being
allocated CPU time.

In most real-time operating systems the executive dealing with the task management
functions is split into two parts: a scheduler which determines which task is to run
next and which keeps a record of the state of the tasks, and a dispatcher which
performs the context switch.

6.5.1 Task States

With one processor only one task can be running at any given time and hence the
other tasks must be in some other state. The number of other states, the names

Non-
existent

Figure 6.10 Example of a typical task state diagram.
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given to the states, and the transition paths between the different states vary from
operating system to operating system. A typical state diagram is given in Figure 6.10
and the various states are as follows (names in parentheses are commonly used
alternatives):

® Active (running): this is the task which has control of the CPU. It will
normally be the task with the highest priority of the tasks which are ready
to run.

®  Ready (runnable, on}: there may be several tasks in this state. The attributes
of the task and the resources required to run the task must be available for
the task to be placed in the Ready state.

® Suspended (waiting, locked out, delayed): the execution of tasks placed in
this state has been suspended because the task requires some resource which
is not available or because the task is waiting for some signal from the plant,
for example input from the analog-to-digital converter, or because the task
is waiting for the elapse of time.

® Existent (dormani, off): the operating system is aware of the existence of
this task, but the task has not been allocated a priority and has not been
made runnable. '

® Non-existent (terminated): the operating systern has not as yet been made
aware of the existence of this task, although it may be resident in the
memory of the computer,

The status of the various tasks may be changed by actions within the operating
system — a resource becoming available or unavailable — or by commands from the
application tasks. A typical command is:

TURN ON (ID) — transfer a task from existent to ready state,

where ID is the name by which the task is known to the operating system. A typical
set of commands is given in Table 6.1. It should be noted that the transition from
ready to active can only be made at the behest of the dispatcher.

6.5.2 Task Descriptor

Information about the status of each task is held in a block of memory by the
RTOS. This block is referred to by various names: rask descriptor (TD), process
descriptor . (PD), task control block (TCB) or task data block (TDB). The
information held in the TD will vary from system to system, but will typically consist
of the following: ‘

® task identification (ID);
® task priority (P);
® current state of task;
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Table 6.1 RTOS task state transition commands

OFFCO1 Turn off the task leaving the memory marked as occupied

OFFCO02 Turn off the task leaving the memory marked as unoccupied

DELCO1 Delay the task leaving the memory marked as occupied; delay is
calculated using current value of time

DELCO2 Delay the task leaving the memory marked as unoccupied; delay is
calculated as for DELCO01

DELC03 Delay the task leaving the memory marked as occupied; delay is
caleulated by adding the delay to the value of time stored in the task
descriptor

TPNCOI Turn the task on: will be accepted if the task is ON, OFF or DELAYED;

cither the ON constant can be placed in the task descriptor or a specified
turn-on time
TPNCO2 Turn on the task; will only be accepted if the task is in the OFF state
TPNCO3 Run the task immediately regardless of priority; will be accepted if the
task is ON, OFF or DELAYED

e area to store volatile environment (or a pointer to an area for storing the
volatiie environment); and
e pointer to next fask in a list.

The reason for including the last item in the list above is that the task descriptors
are usually held in a linked list structure. The executive keeps a set of lists, one for
each task state as shown in Figure 6.11. There is one active task (task 1D = 10) and
three tasks that are ready to run (IDs = 20, 9 and 6). The entry held in the executive
for the ready queue head points to task 20, which in turn points to task 9 and so on.

The advantage of the list structure is that the actual task descriptor can be
located anywhere in the memory and hence the operating system is not restricted to
a fixed number of tasks as was often the case in the older operating systems which
used fixed length tables to hold task state information. With the list structure
moving tasks between lists, reordering the lists, creating and deleting tasks can all
be achieved simply by changing pointers. There is no need to copy or move the task
descriptors themselves. ‘

The information that has to be stored in order to continue running a task that
has beén suspended by the scheduler for some reason or other comprises:

Housekeeping information: CPU register contents;
stack pointer;
program counter.
Task data: task stack;
task general work area (heap).
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Figure .11 List structure for holding task state information.

6.6 SCHEDULER AND REAL-TIME CLOCK INTERRUPT HANDLER

The real-time clock handler and the scheduler for the clock level tasks must be
carefully designed as they run at frequent intervals. Particular attention has to be
paid to the method of selecting the tasks to be run at each clock interval. If a check
of all tasks were to be carried out then the overheads involved could become
significant,

6.6.1 System Commands Which Change Task Status

The range of system commands affecting task status varies with the operating
system. Typical states and commands are shown in Figure 6.12 and fuller details of
the tommands are given in Table 6.1, Note that this system distinguishes between
tasks which are suspended awaiting the passage of time — these tasks are marked
as delayed — and those tasks which are waiting for an event or a system resource
— these are marked as locked out,

The system does not explicitly support base level tasks; however, the lowest four
priority levels of the clock level tasks can be used to create a base level system. A
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Figure 6.12 RTOS task state diagram.

so-called free time executive (FTX) is provided which if used runs at priority level
n — 3 (see Figure 6.13) where 7 is the lowest-priority task number. The FTX is used
to run tasks at priority levels n—2, n—1 and n; it also provides support for the
chaining of tasks. The dispatcher is unaware of the fact that tasks at these three
priority levels are being changed; it simply treats whichever tasks are in the lowest
three priority levels as low-priority tasks. Tasks run under the FTX do not have
access to the system commands (except OFFCOL, that is turn task off).

6.6.2 Dispatcher — Search for Work

The dispatcher/scheduler has two entry conditions:

1. the real-time clock interrupt and any interrupt which signals the completion
of an inputfoutput request;

2. a task suspension due to a task delaying, completing or requesting an
inputfoutput transfer.

In response to the first condition the scheduler searches for work starting with the
highest-priority task and checking each task in priority order (see Figure 6.14). Thus
if tasks with a high repetition rate are given a high priority they will be treated as
if they were clock level tasks, that is they will be run first during each system clock
period. In response to the second condition a search for work is started at the task



232

Dispatcher

Priority
slots

. ?:Y \-\“\L

FT link

\ n

Figure 6.13 RTOS task structure diagram.
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with the next iowest priority to the task which has just been running. There cannot
be another higher-priority task ready to run since a higher-priority task becoming
ready always pre-empts a lower-priority-running task.

The system commands for task management are issued as calls from the
assembly level language and the parameters are passed either in the CPU registers
or as a control word immediately following the call statement.

EXAMPLE 6.4
Use of RTOS System Calls

As an example consider the system whose outline design is given in Figure 6,15, It
is assumed that the Controt, Display and Operator input programs are to be
run as separate tasks with priorities 1, 10, 20, respectively. The Control task has
to run at 40 ms intervals and the Display update task at 5 s intervals. The system

Foreground

Clock/
calendar

Control - —t-

Data
- - - - storage

Display -

Operator [
input

Management
information

Background

Figure 6.15 Software modules for foreground/background system
showing data storage.
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clock is set at 20 ms and hence the Control task has to run every 2 system ticks.
The outline structure of the system is given below:

TASK MAIN

Starts up the systemby creating the various
tasks and setting them to the ON condition

- mm me e

CREATECCONTROL,1,STCTRL)
CREATE(DISPLAY,10,STDISP)
CREATE (OPERATOR,20,STOPR)

: STCTRL, STDISP, STOPR are common symbols which
; define the starting locations for each task,
; the values will be inserted by the linker/loader.

LDA TIME ; TIME is system variable which
; gives current time

CALL TPNCOD1

FCB1; turnoncontrol task

LDA D
CALL TPNCO2Z
FCB 10 ; turnondisplay task

LDA D _
CALL TPNCO2
FCB 20 ; turn on operator input task

LT

CALL OFFC02 ; terminatemain task

END
In the above code by using TPNCO1 to turn on the control task the current value
of time is placed in the task descriptor and hence the task can be synchronised to

the clock.

TASK CONTROL

CALL DELCO3
FCB 0,2 ; set next time for running
; toprevious time plus two ticks

END
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TASK DISPLAY

main body of task

CALL DELCO2
FCB 5,0 ; delay task by S seconds

END

The difference between using PELCO3 and DELCO2 in the above task segments is
that DELCO3 adds the delay increment to the value of time stored in the task
descriptor; this time is the time at which the task was last due to run, The use of
DELCO3 therefore provides a means of running tasks in a cyclic mode at clock level.
The DELCO2 command adds the delay value to the current time and stores the result
in the task descriptor; hence the delay is calculated not from when the task was last
due to run, but from the time at which the delay command is issued.

In designing a real-time system it is important to know how the scheduler
searches for work. In the system described in Example 6.4, the scheduler searches
in strict priority order and hence the overheads in terms of the time spent searching
for work will be increased if some of the high-priority tasks rarely run. A careful
assessmment of task priority is required and particular attention will have to be paid
to alarm action tasks. Such tasks are normally accorded high Dpriority; however, it
is hoped that they will rarely be required. One solution with the above system which
avoids having a group of high-priority but rarely run alarm tasks is to make use of
the TPNCO3 command. The alarm action tasks are given low priority, but can be
made to run immediately if the alarm scanning routine uses the TPNCO3 call to
invoke the appropriate task.

6.7 MEMORY MANAGEMENT

Since the majority of control application software is static — the software is not
dynamically created or eliminated at run-time — the problem of memory
management is simpler than for multi-programming, on-line systems. Indeed with
the cost of computer hardware, both processors and memory, reducing many.
control applications use programs which are permanently resident in fast access
memory,

With permanently resident software the memory can be divided as shown in
Figure 6.16. The user space is treated as one unit and the software is linked and
loaded as a single program into the user area. The information about the various
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Operating
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Low memory System workspace

Figure .16 Non-partitioned memory.

tasks is conveyed to the operating system by means of a create task statement. Such
a statement may be of the form

Create(TaskID, Priority, StartAddress, WorkSpace)

The exact form of the statement will depend on the interface between the high-level

language and the operating system.
An alternative arrangement is shown in Figure 6.17. The available memory is

divided into predetermined segments and the tasks are loaded individually into the

Bootstrap ROM

Operating
system

Device handlers

User task area 1

User task area 2

User task area 3

User task area 4

System workspace

Figure 6.17 Partitioned memory.
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various segments. The load operation would normally be carried out using the
comiiland processor. With this type of system the entries in the TD {or the operating
system tables) have to be made from the console using a memory examine and
change facility.

Divided (partitioned) memory was widely used in many early real-time
operating systems and it was frequently extended to allow several tasks to share one
partition; the tasks were kept on the backing store and loaded into the appropriate
partition when required. There was of course a need to keep any tasks in which
timing was crucial (hard time constraint tasks) in fast access memory permanently.
Other tasks could be swapped between fast memory and backing store. The
difficulty with this method is, of course, in choosing the best mix of partition sizes.
The partition size and boundaries have to be determined at system generation.

A number of methods have been used to overcome the problem of fixed
partitions. One method, referred to as floating memory, divides the available
memory into small blocks, for example 64 words. The tasks are installed on the
backing store and when a task is required to run the operating system examines a
map of memory and finds a contiguous area of memory which will hold the task.
The task is loaded into the memory and the memory blocks occupied by the tasks
are marked as occupied in the memory map. The area occupied by a task is closely
related to the actual size of the task and not to some predetermined fixed partition
size. A task which for some reason becomes suspended or delayed will have the
memory area it occupies marked in the memory map as occupied but available;
hence if another task becomes ready then the suspended task can be returned to
backing store and the ready task loaded into its area. In this type of system
information must be held in the task descriptor to indicate if the task can be
swapped, since, for example, a control task which has to run every 40 ms would have
to be held permanently in memory in order to guarantee the sampling rate. A
problem which is generated by this system is fragmentation of the available memory.
Small areas of free memory become spread about the memory address space; none
of the individual areas are large enough to take a task but the combined areas could
if they could be brought together. Some form of garbage collection is necessary to
bring dispersed areas into contiguous blocks.

Other systems which permit dynamic allocation of memory allow the tasks
themselves to initiate program segment transfers, either by chaining or by
overlaying. In chaining the task is divided into several segments which run
sequentially. On completion of one segment the next segment is loaded from
memory into the area occupied by the previous segment; any data required to be
passed is held either on the disk or in a common area of memory, '

Task swapping involves one task invoking another task: the first task is
transferred to backing store and the second task brought into memory and made
available to run. The procedure is shown in Figure 6.18. Task | invokes task § by
swapping it into priority level 41 and in turn task 5 chains task 6 into level 41. Task
6 swaps task 7 into level 42, When task 7 terminates the operating system returns
control to task 6 and when it terminates control is returned to task 1. It should be
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noted that task 1 remains suspended until task 6 terminates and similarly task 6 is
suspended until task 7 terminates.

The difference between chaining and overlaying is that in overlaying a part of
the task, the root task, remains in memory and the various segments are brought
into an overlay area of memory. In a multi-tasking system there may be several

g

Task |
SWAPS5——— W
CHAIN2 o Task 5
CHAING
Task 2
CHAIN3
Task 6
1 SWAP7 =—~
. Task 3 T Task 7
STOP ——
SWAPR _‘\ ————
CHAIN 4 STOP
|
Task 4
Task 8
CHAIN | _——
Priority level 40 Priority level 41 Priority level 42

Figure 6.18 Task chaining and swapping.
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different overlay areas each of which may be shared by several tasks. A typical
arrangement is shown in Figure 6.19 in which it is assumed that two tasks (1 and
15) have overlay segments; each task maintains a root segment and overlay area and
the various overlays are loaded into and out of the overlay areas.

Many of the real-time operating systems which provide facilities to swap tasks
between fast access memory and backing store were designed for computer systems
with small amounts of fast access memory, typically 32K words, and limited
memory address space (this is limited by the address lines available on the bus and
the CPU architecture). Some of these computer systems have been extended to
operate with larger memories by increasing the number of address lines on the bus
system and providing memory management units. The way in which a memory
management unit operates is to map areas of physical memory onto the actual
memory address space. As a consequence the operating systems have been modified
to support a larger memory and many do this by using the extended memory to hold
the task overlays with a requirement that the root task still be located in the first
segment of the memory.

Operating
system

User tasks

Overlay area Overlay
Task 15 0

Overlay
1

Overlay

Overlay N

n~-1

Overlay area Ovel
Task 1 Overlay| Pveriay Overlay [Overlay
0 1 m - 1 m

Task 15 root

Task 1 root

Figure 6.19 Task overlaying,
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Dynamic memeory allocation is complex to handle and should be avoided wherever
possible in embedded real-time systems. RAM is now so cheap that the cost of
adding extra memory is usually much less than the cost of programming to provide
dynamic memory allocation. It should never be used in safety-critical applications.

6.8 CODE SHARING

In many applications the same actions have to be carried out in several different
tasks. [n a conventional program the actions would be coded as a subroutine and
one copy of the subroutine would be included in the program. In a multi-tasking
system each task must have its own copy of the subroutine or some mechanism must
be provided to prevent one task interfering with the use of the code by another task.

The problems which can arise are illustrated in Figure 6.20. Two tasks share the

S-Data for A

B —— Reschedule

|
I
| ————— | — Task B
| | —=
| | g
| | —
| = CAl[L § — —= Subroutine
| —
I ' p——
I I ! ——= » Overwrites A’s data
| J—
} I 1 __ s ——e—/ Subroutine contains
I | Reschedule - data relevant to B
—— wl—

Figure 6.20 Sharing a subroutine in a multi-tasking system.
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subroutine S. If task A4 is using the subroutine but before it finishes some event

occurs which causes a rescheduling of the tasks and task B runs and uses the

subroutine, then when a return is made to task A, although it will begin to use

subroutine S again at the correct place, the values of locally held data will have been

changed and will reflect the information processed within the subroutine by task B.
Two methods can be used to overcome this problem:

o serially reusable code; and
® re-entrant code.

6.8.1 Serially Reusable Code

As shown in Figure 6.21, some form of lock mechanism is placed at the beginning
of the routine such that if any task is already using the routine the calling task will
not be allowed entry until the task which is using the routine unlocks it. The use of
a lock mechanism to protect a subroutine is an example of the need for mechanisms
to support mutual exclusion when constructing an operating system.

6.8.2 Re-entrant Code

If the subroutine can be coded such that it does not hold within it any data, that
is it is purely code — any intermediate results are stored in the calling task or in a

Task Task
A B
L Lock
|
Subroutine
S

Figure 6.21 Serially reusabie code.
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stack associated with the task — then the subroutine is said to be re-entrant. Figure
6.22 shows an arrangement which can be used: the task descriptor for each task
contains a pointer to a data area — usually a stack area — which is used for the
storage of all information relevant to that task when using the subroutine. Swapping
between tasks while they are using the subroutine will not now cause any problems
since the contents of the stack pointer will be saved with the volatile environment
of the task and will be restored when the task resumes. All accesses to data by the
subroutine will be through the stack and hence it will automatically manipulate the
correct data.

Re-entrant routines can be shared between several tasks since they contain no
data relevant to a particular task and hence can be stopped and restarted at a
different point in the routine without any loss of information. The data held in the
working registers of the CPU is stored in the relevant task descriptor when task
swapping takes place.

Device drivers in conventional operating systems are frequently implemented
using re-entrant code. Another application could be for the actual three-term (PID)

TD TD
A B
Data Data
Task A Task B
code code
Task A Task B
data data

I
Subroutine
pure
code

Figure 6.22 Use of re-entrant code for code sharing.
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Figure 6.23 Use of re-entrant code in process control.

control algorithm in a process control system with a large number of control loops.
The mechanism is illustrated in Figure 6.23; associated with each control loop is a
LOOP descriptor as well as a TASK descriptor. The LOOP descriptor contains
information about the measuring and actuation devices for the particular loop, for
example the scaling of the measuring instrument, the actuator limits, the physical
addresses of the input and output devices, and the parameters for the PID
controller. The PID controller code segment uses the information in the LOOP
descriptor and the TASK to calculate the control value and to send it to the
controller. The actual task is made up of the LOOP descriptor, the TASK segment
and the PID control code segment. The addition of another loop to the system
requires the provision of new loop descriptors; the actual PID control code remains
unchanged.

6.9 RESOURCE CONTROL: AN EXAMPLE OF AN INPUT/OUTPUT
SUBSYSTEM (10SS)

One of the most difficult areas of programming is the transfer of information to and
from external devices. The availability of a well-designed and implemented
input/output subsystem (IOSS) in an operating system is essential for efficient
programming. The presence of such a system enables the application programmer
to perform input or output by means of system calls either from a high-level
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language or from the assembler. The IOSS handles all the details of the devices. In
a multi-tasking system the 10OSS should also deal with all the problems of several
tasks attempting to access the same device.

A typical 10SS will be divided into two levels as shown in Figure 6.24. The 1/O
manager accepts the system calls from the user tasks and transfers the information
contained in the calls to the device control block (DCB) for the particular device.
The information supplied in the call by the user task will be, for example, the

‘ Application
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Input/output
manager
—|
DCB : ‘ DCB DCB | | DCB
1 . ; 1
! 1]
1 ' ' ]
]
Driver Driver Driver Driver
: ' ) X ' '
R el 1 s mpnd | oy sl
Device Device Device Device

Figure 6.24 General structure of 10SS.
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location of a buffer area in which the data to be transferred is stored {output) or
is to be stored (input); the amount of data to be transferred; type of data, for
example binary or ASCII; the direction of transfer; and the device to be used.

The actual transfer of the data between the user task and the device will be
carried out by the device driver and this segment of code will make use of other
information stored in the DCB. A separate device driver may be provided for each
device or, as is shown in Figure 6.25, a single driver may be shared between several
devices; however, each device will require its own DCB. The actual data transfer will
usually be carried out under interrupt control,

Typically 2 DCB will contain the information shown in Table 6.2. The physical
device name is the name by which the operating system recognises the device and
the type of device is usually given in the form of a code recognised by the operating
system. The operating system will normally be supplied with DCBs for the more

| _i Y
DCB1 DCB2
IO

User | ® manager
task

]

| Driver
| /
Interrupt Interrupt
service service
routine routine
1088 [} *
/ |

Device Device
1 2

Figure 5.25 Detailed arrangement of 10SS.
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Table 6.2 Device control block

Physical device name

Type of device

Device address

Interrupt address

Interrupt service routine address
Device status

Device-related information

Data area address
Bytes to be transferred
Current byte count
Binary/ASCII

Data-related information

common devices. The DCBs may require modifying to reflect the addresses uscd in
a particular system, although many suppliers adopt the policy of using standard
addresses both for the physical address of the device on the bus and for the interrupt
focations and interrupt handling routines. The addition of non-standard devices will
require the user to provide appropriate DCBs. This task is usually made reasonably
simple by providing source code for sample DCBs which can be modified to meet
particular needs.

In a multi-tasking system provision has to be made to deal with overlapping
requests for a particular device, for example several tasks may wish to send
information to the log device — typicaily a printer. The normal way of handling
output to a printer in a single-user environment is to send a record, that is one line,
at a time, a return being made to the user program between each line. If this is done
in a multi-programming system and the printer is not allocated to the specific
program then there is a danger of the output from the different programs becoming
intermingled. The solution usually adopted in a multi-user environment is to spool
the output, that is it is intercepied by the operating system and stored in a file on
the disk. When the program terminates or the user signs off, the contents of the
spool file associated with that program or that user are printed out.

A similar solution can be used in a multi-tasking environment providing the user
task can force the printing out of the spool file for that task. This addition is needed
because in a real-time multi-tasking system tasks may not terminate. Although
spooling provides user tasks witli the ability to control the interleaving of output,
there is still the problem of what action to take if the device is in use when a user
task makes a request to use it. There are several possible solutions:

1. Suspend the task until the device becomes available.

2. Return immediately to the task with information that the device is busy and
leave it to the task to decide what action to take — normally to call a delay
and try again later.

3.  Add the request to a device request queue and return to the calling task; the
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calling task must check at some later time to see if the request has been
completed.

There are advantages and disadvantages to each method and a good operating
system will provide the programmer with a choice of actions, although not all
options wiil be available for every device.

Option 1 is referred to as a non-buffered request, in that the user task and the
device have to rendezvous. In some ways it can be thought of as the
equivalent of hardware handshaking — the user task asks the device ‘are you
ready?’ and waits for a reply from the device before proceeding.

Option 2 is the equivalent of polling and is rarely used.

Option 3 is referred to as a buffered request. It is a form of message passing:
the user task passes to the 10SS the equivalent of a letter — this consists of
both the message and instructions about the destination of the message — and
then the user task continues on the assumption that eventually the message
will be delivered, that is sent to the output device. Usually some mechanism
is provided which enables the user task to check if the message has been
received, that is a form of recorded delivery in which the I0SS records that
the message has been delivered and allows the user task to check. Buffered
input is slightly different in that the user task invites an external device to send
it a message — this can be considered as the equivalent of providing your
address to a person or to a group of people. The I0OSS will collect the message
and deliver it but it is up to the user task to check its ‘mail box’ to see if a
message has been delivered.

6.9.1 Example of an 10SS

The description which follows is of a particular I0SS of an RTOS which supports
both computer peripherals — VDUs, printers, disk drives, etc. — and process-related
peripherals — analog and digital input and output devices. The system commands
used to access the IOSS functions are listed in Table 6.3. In addition to the
commands listed in the table there are commands for analog output, for pulse
output devices and for incremental output devices.

The 1I0SS system manager maintains a device request queue for each device and
is responsible for interpreting the user task request and placing the appropriate
information in the device request queue. If the request is a buffered request, then
a return is made immediately to the calling task. If the request is non-buffered, then
the I0SS manager changes the status of the calling task to LOCKED QUT and
jumps to the dispatcher to begin the search for other work. The [OSS manager, in
addition to dealing with requests, has to take action on the completion of a transfer.
The driver associated with a given device signals the IOSS manager on completion
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Table 6.3 0SS system commands for RTOS

DTRCO1 Disk transfer request — buffered

DTRCO2 Disk transfer request — non-buffered

DTRCO03 Call to check for completion of buffered request
INRCO1 Input request from keyboard device — buffered
INRCO2 Call to check for completion of input request
OuCCol Call to

(a) request system data area, i.e. spool area
(b) request user data area

{c) check status of device

{(d) check if user data area is free

OURCO! Request output of message to printer or terminal — buffered

FMRCO1 Find and reserve area of memory external to the calling task

RMRCO01 Release area of memory found using an FMRCO] cal!

SCRC10 Check if the previously requested buffered scans have been
completed

SCRC11 Request non-buffered, non-priority analog scan

SCRCI2 Request non-buffered, priority scan

SCRCI3 Request buffered, non-priority scan

SCRC14 Request buffered, priority scan

DORCO! Request for a normal digital output, non-priority

DORCO02 Request for a normal digital output, priority

DORCO03 Request for a timed digital output, non-priority

DORC04 Request for a timed digital output, priority

{Note: all the DORC requests can be buffered or non-buffered — the
selection is made by setting a parameter for the call)

of a transfer. The 10SS manager, for non-buffered requests, sets the status of
the user task which made the request to ON. For buffvied requests there are
two possible actions: if the calling task has checked to see if the action has
been completed before it was completed it wilt have been placed in the LOCKED
OUT state and hence the 10SS treats it as a non-buffered request. If completion
occurs priot to a check for completion by the user task, then the IOSS records
that the transfer has been completed. When a check is made a return to the
calling task will be made with an indication that the transfer is complete. The
actual detail of the actions on completion varies for the different types of
device.

In addition to dealing with the above, the I0SS manager following completion
of a transfer by a device has to check if further requests are waiting in the device
request queue; if they are it transfers information to the DCB and initiates the start
of transfer before returning to the dispatcher.



250 Operating Systems
6.9.2 Output to Printing Devices

The RTOS provides the programmer with a choice of spooling mechanisms:

System data areas: a number of fixed sized areas on the disk are provided and
are identified by a tag number;

User data areas: the user may define data areas of any size which can be in
memory or on the disk and are again identified by a tag number.

The system data areas are made available to any user task which requests a data
area; the request can be only for a system data area, not one with a specified tag
number. A user data area can be assigned to a particular user task. {Note that in
this system the assignment is by implication only; all user tasks have to agree that
a given tag number applies to a given data area and have to agree that use will be
restricted to a given task.) The advantages of a user data area are:

1. the area can be in memory or on disk:

2. the area can be of any size;

3. if use of the area is restricted to one task then it can contain a mixture of
permanent and variable data and the user task only needs to transfer the
information which has been changed since the last output.

The sequence of operations to be carried out in order to output a message via a user
data area is as follows in Example 6.5,

EXAMPLE 6.5
Input From Keyboard

; request for user data area
i
LDA {abel
SPB OUCCOT ;systemcall
ireturn here if area inuse
jnormal return, request accepted
:
labet DWparameters ; type of request
; tag number
; device check yes/no
; device number
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; transfer of data to data area can take place

; request for cutput to device

SPB OURCOT ;systemcall
LDK lLabela ‘
;return is made to this tecation
H
labela DW parameters jdevice number
;data area type
:address of start of data area
i
sfurther processing can be done during data cutput

;check for completion of transfer

r
LDA Label
SPB OUCCO1

.:return here if not complete
;return here if coniplete

For input the system expects the user task to provide a buffer area in memory to
contain the input. The size is limited to a maximum of 256 words and hence an input
record from the keyboard, including control characters used to edit the input line,
is restricted to 256 characters. The input buffer area can be part of the user task or
a separate area of memory found using the FMRCO1 call. In this particular RTOS
it is preferable to use a system area provided by the FMRCQ1 call, since this allows
the user task to be swapped out of memory during the input. The steps involved in
the input request are shown on the flowchart in Figure 6. 6 and this also shows the
different layers of operation of the operating system. It outline the steps are:

1. Use FMRCO1 call to obtain input buffer area.

2. Request input using INRCOT.

3. Do other processing if required.

4. Check if input completed using the INRCO2 call — if input is not complete
the task will be suspended until it is.

Transfer input from buffer area to program area.

6. Release buffer area using RMRCO1 call.

wn

Note that the operating system treats the user task differently when it checks for
completion of input compared with the check for completion of output. The reason
is that it assumes that a check for completion of input will be made only when there
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is no other work for the task to do; hence if a return to the task on non-completion
was made then all the task can do is delay for a short period and then check again
- an inefficient procedure. However, on output a task which finds that the previous
output is not complete may be able to take some other action, for example set up
another data area with a further request and continue.

6.9.3 Device Queues and Prioritias

In a real-time system a simple device queue based on a first-in-first-out organisation
can cause problems in that the task requesting a device effectively loses its priority.
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Figures 6.27a and 6.27b illustrate this. In Figure 6.27a a number of tasks are queued
waiting for the printer and one task (76) is already using the device. The higher-
priority tasks.including the very high-priority task 5 will not gain access to the
printer until task 76 releases it. If the tasks have made a non-buffered request they
will be locked out until they reach the head of the printer queue. However, if task
5 has made a buffered request it will be able to continue and, if it runs frequently,
then after a short period of time the printer queue will contain several requests from
task 5 as is shown in Figure 6.27b. If the system is not overloaded the printer will
eventually catch up with the output from task 5. The delay between the requests

] .
Waiting *]
19 k]| 20 5
[ commmm—
Accepted
76 .
s printer
(a)
- 3 ey L Bl (4
Waiting
3 20 5 5 5
Accepted
9
! " printer
(b)

Figure 6.27 Printer queue: {(a buffered request; (b) non-buffered request.
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from task 5 and the eventual output on the printer can be reduced if the printer
queue is organised on a priority basis.

The position regarding priorities becomes even more complicated when the
TOSS deals with many devices and hence has several device queues. Decisions on the
order in which device queues are serviced are complicated and difficult.

6.10 TASK CO-OPERATION AND COMMUNICATION

In real-time systems tasks are designed to fulfil a common purpose and hence they
need to communicate with each other. However, they may also be in competition
for the resources of the computer system and this competition must be regulated.
Some of the problems which arise have already been met in considering the
input{output subsystemn and they involve:

® mutual exclusion;
¢ synchronisation; and
¢ data transfer.

6.11 MUTUAL EXCLUSION

A multi-tasking. operating system allows the sharing of resources between several
concurrently active tasks. This does not imply that the resources can be used
simultaneously. The use of some resources is restricted to only one task at a time.
For others, for example a re-entrant code module, several tasks can he using them
at the same time. The restriction to one task at a time has to be made for resources
such as input and output devices, otherwise there is a danger that input intended for
one task could get corrupted by input for another task. Similarly problems can arise
if two tasks share a data area and both tasks can write to the data area. This is
illustrated by Example 6.6.

EXAMPLE 6.6

Two software modules, bottle_in_count and bottle_out_count, are used
to count pulses issued from detectors which observe bottles entering and leaving a
processing area. The two modules run as independent tasks. The two tasks operate
on the same variable bottle_count. Module bottle_in_count increments
the variable and bottle_out_count decrements it. The modules are
programmed in a high-level language and the relevant program language
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statements are:

bottle_count :=bottle_count +1; (bottle_in_count)
bottle_count := bottle_count - 1; (bottle_out_count)

At assembler code level the high-levcl instructions become:

{bottle_in_count} {bottle_out_count}
LD A, (bottle_count) LD A, (bottle_count}
ADD 1 suB 1

LD (bottle_count), A LD (bottle_count), A

Now if variable bottle_count contains the value 10, bottle_in_count is
running and executes the statement LD A, (bottle_count) then as Figure 6.28
shows, the A register is loaded with the value 10. If the operating system now
reschedules and bottle_out_count runs it will also pick up the value 10,
subtract one from it and store 9 in bottle_count. When execution of
bottle_in_count resumes its environment will be restored and the A register
will contain the value 10, one will be added and the value 11 stored in
bottle_count. Thus the final value of bottle_count after adding one to it
and subtracting one from it will be 11 instead of the correct value 10.

A reg bottle_in_count Count bottle out couni A reg
? LD A, (bottle_count} 10

10 context \1_0/7 LD A, (bottle count) 10
10 change forced 10 SUB 1 9
10 by operating system 10 LD (bottle_count), A 9
10 ADD. 1 9 9
11 LD (bottle_count), A 9 9
11 11 9

Figure 6.28 Problem of shared memory (see Example 6.6).

In abstract terms mutual exclusion can be expressed in the form

remainder |

pre-protocol (necessary overhead)
critical section

post-protocol (necessary overhead)
remainder 2

Remainder | and remainder 2 represent sequential code that does not require
access to a particular resource or to a cOmmon area of memory.

Critical section is the part of the code which must be protected from interference
from another task.
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Pre-protocol and post-protocol called before and after the critical sections are
code segments that will ensure that the critical section is executed so as to
exclude all other tasks.

To benefit from concurrency both the critical section and the protocols must be
much shorter than the remainders, so that the remainders represent a significant
body of code that can be overlapped with other tasks. The protocols represent an
overhead which has to be paid in order to obtain concurrency.

[t is implicit in concurrent programming that there is ‘loose connection® or ‘low
coupling’ between tasks (see for example Pressman (1992) for a definition of ‘loose
connection’). Low coupling increases reliability since an error in one task which
causes an abnormal termination of that task should not, if there is low coupling,
cause other tasks in the system to fail. In abstract terms this can be expressed as the
requirement that an abnormal termination in the code forming the remainder should
not affect any other task. It would be unreasonable to demand that a failure of the
protocol or the critical sections did not affect another task, since the critical section
represents the code by which communication or sharing of a resource with another
task is taking place.

In considering solutions to mutual exclusion problems it is normal to assume
that a number of so-called primitive instructions exist. The correctness of the
primitives is assumed to be guaranteed by the language or operating system
supporting them. A basic assumption is that a primitive forms an indivisible
instruction and hence the task invoking a primitive is guaranteed not to be pre-
empted during the execution of the primitive. At the operating system level the basic
primitive instruction is the machine code instruction and there is reliance on the
CPU hardware to support the indivisibility of an instruction. Furthermore there is
also reliance on the hardware implementation of mutual exclusion on the basic
access to memory. For example, in a common memory system there will be some
form of arbiter which will provide for mutual exclusion in accessing an individual
memory location. The arbitration mechanism for a common bus structure was
discussed in Chapter 3 in which the CPU controls access to the bus. If , for example,
direct memory access is used then the hardware associated with the DMA unit has
to inform the CPU when it wants to take control of the bus. Some systems have been
designed with memory shared between processors, each of which has its own bus;
in these cases dual ported memory devices have been used and the problem of
mutual exclusion is thereby transferred to the memory itself. (Note: true dual ported
memory allows concurrent access to both processors. Often the memory does not
allow true concurrent access; it delays one device for a short period of time.
However, to the processor the memory appears to permit concurrent access.)

6.11.1 Semaphore

The most widely used form of primitive for the purposes of mutual exclusion is the
binary semaphore. The semaphore mechanism was first proposed by E. W, Dijkstra
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in 1968. A binary semaphore is a condition flag which records whether or not a
resource is available. If, for a binary semaphore s, s=1, then the resource is
available and the task may proceed; if s=0 then the resource is unavailable and the
task must wait. To avoid the processor wasting time while a task is waiting for a
resource to become available there has to be a mechanism for suspending the
running of a task when it is waiting and for recording that the task is waiting for
a particular semaphore. A typical mechanism for doing this is to associate with each
semaphore a queue (often referred to as a condition queue) of tasks that are waiting
for a particular semaphore. The use which the operating system makes of this queue
is explained more fully in Chapter 7. For the present we will assume that such a
queue is created when we declare a semaphore and tasks can be removed from and
added to the queue.

There are only three permissible operations on a semaphore, Initialise,
secure, and Release, and the operating system must provide the following
procedures:

Initiatise (s:ABinarySemaphore, v: INTEGER): set semaphore s to
value of v(v=0 or 1).

Secure{s): if s=1 then set s:=0 and allow the task to proceed, otherwise
suspend the calling task.

Release(s): if there is no task waiting for semaphore s then set s:=1,
otherwise resume any task that is waiting on semaphore s.

The operations Secure(s) and Release (s) are system primitives which are
carried out as indivisible operations and hence the testing and setting of the
condition flag are performed effectively as one operation.

Example 6.7 considers a task which wishes to access a printer.
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EXAMPLE 6.7
Mutual Exclusion

(*Mutual exclusion problem~use of binary semaphore*)
VAR
printerAccess: SEMAPHORE;
PROCEDURE Task;
BEGIN
(* remaindert *)
Secure{printerAccess)

(t
ifprinter is not available task will
be suspended at this point
*)
(*
printer available-critical section
*)
(t
do output
*)

Retease(printerAccess)
(* remainder2 ™)
END Task ;

In Figure 6.29 the underlying operations which take place as several tasks
attempt to access the same resource (assumed to be a printer) are shown. The binary
semaphore, printerAccess, is initialised to the value 1 in step 1. As part of this
process a three-item record with the semaphore value set to 1 and the pointers
to the head and tail of the semaphore queue set to null is created. In step 2, Task
A performs a Secure(printerAccess) operation and the semaphore value
is set to 0. Since there was no other task waiting, Task A is allowed to
use the resource. Sometime later Task A suspends and Task 8 performs a
Secure{printerAccess), step 3. Since printerAccess=0 it cannot
continue and is added to the semaphore queue by inserting pointers to the task
descriptor for Task B, in the semaphore control block. If Task ¢ now performs
a Secure{printerAccess), step 4, then the pointer in the task descriptor for
Task B is filled in with the address of the TD for Task € and the tail pointer entry
in the semaphore control block is filled in to point to Task C. When Task A
performs the Release(printerAccess) operation, step 5, Task 8 is removed
from the semaphore queue and then obtains access to the resource. At step 6, Task
B performs the Release(printerAccess) operation and hence Task ( is
allowed to run and at step 7 when Task € performs Release(printerAccess)
the value of the semaphore is set to 1.



1. Initialise (printerAccess, 1)

printet Access

Value = 1
Head
Tail

2. Task A active Secure (printerAccess}
printer Access
Value = 0

Head
Tail

3. Task A suspends, Task B active Secure (printerAccess)

printer Access _

Value = 0 Task B is suspended and
Head o Task B placed in printerAccess

- queue

Tail o TD

4. Task C runs attempts Secure {printerAccess)

printer Access

Value = 0 Task C is suspended and
Head o Task B Task C added to printerAccess
Tail o D TD queue

5. Task A runs. Release (printerAccess)

printerAccess

Vaiue = 0 Task B is removed from
Head o Task C printerAccess queue and
Tal ol ™D placed in Ready queue

6. Task B runs. Release {printerAccess)

printerAccess

Value = 0 Task C is transterred from
Head printerAccess queue to
Tail | Ready queue

7. Task C runs, Release (printerAccess)
printer Access

Value = |
Head
Tail

Printer is available 1o any task

Figure 6.28 Mutual exclusion using binary sernaphore.
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6.11.2 The Monitor

Although the binary and general semaphore provide a simple and effective means
of enforcing mutual access they have one weakness: in use they are scattered around
the code. Each task that requires access to a particular resource has to know the
details of the semaphore used to protect that resource and to use it. The onus on
correct use is placed on the designer and implementer of each task. In a small system
this causes few problems but in larger, more cemplex systems where the tasks
involved may be divided between several people use of the semaphore becomes more
difficult and the probability of introducing errors increases.

An alternative solution which associates the control of rmutual exclusion with
the resource rather than with the user task is the monitor, introduced by Brinch
Hansen (1973, 1975) and by Hoare (1974). A monitor is a set of procedures that
provide access to data or to a device. The procedures are encapsulated inside a
module that has the special property that only one task at a time can be actively
executing a monitor procedure. It can be thought of as providing a fence around
critical dat1. The operations which can be performed on the data are moved inside
the fence as well as the data itself. The user task thus communicates with the
monitor rather than directly with the resource.

Figure 6.30 shows an exampie of a simple monitor. Two procedures,
Writebata and ReadData, provide access to the data. These "procedures
represent gates through which access to the monitor is obtained. The monitor
prevents any other form of access to the critical data. A task wishing to write data
calls the procedure WriteData and as long as no other task is already accessing
the monitor it will be allowed to enter and write new data. If any other task was
already using either the WriteData or Readbata operations then the task would
be halted at the gate and suspended, since only one task at a time is allowed to be
within the monitor fence.

Figure 6.31 shows a more complicated monitor with three entry poinis, Entry
1, Entry 2 and Entry 3, and two conditions on which tasks which have gained
entry may have to wait. In the figure, one task, T15, is in the monitor and three
tasks are waiting to enter, two at entry point 1 — 716 and T2 — and one at entry

4
——={  WriteData

Critical
data

~——— Re¢adData

Figure 6.30 A simple monitor.
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Figure 6.31 A general monitor.

point 3 -~ T5. Two tasks have previously entered and have been suspended waiting
for condition A. There are no tasks waiting at entry point 2 or for condition B.

The advantage of a monitor over the use of semaphores or other mechanisms
to enforce mutual exclusion is that the exclusion is implicit; the only action required
by the programmer of the task requiring to use the resource is to invoke the entry
to the monitor. 1f the monitor is correctly coded then an applications program
cannot use a resource protected by a monitor incorrectly.

6.11.3 Intertask Communication

We can divide the issues of synchronisation and communication into three areas:

e synchronisation without data transfer;
e data transfer without synchronisation; and
o synchronisation with data transfer.

6.11.4 Task Synchronisation Without Data Transfer

Frequently one wishes to be able to inform another task that an event has
occurred, or to set a task to wait for an event to occur. No data needs to be
exchanged by the tasks. A mechanism that enables this to be done is the so-called
signal:

A signal s is defined as a binary variable such that if s=1 then a signal has been
sent but has not yet been received.
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Associated with a signal is a queue and the permissible operations on a signal are;

Initialise (s:Signal: v:INTEGER) set s to the value of v (0 or 1).

Wait{s) if s=1 then s:=0 else suspend the calling task and place it in the
condition queue s.
Send(s) if the condition queue s is empty then s;=1 else transfer the first

task in the condition gueue to the ready queue.

Clearly a signal is similar to a semaphore; in fact the difference between the two is
not in the way in which they are implemented but in the way in which they are used,
A semaphore is used to secure and release a resource and as such the calls will both
be made by one task; a signal is used to synchronise the activities of two tasks and
one task will issue the send and the other task the wait. (Note that a signal is
sometimes implemented such that if a task is not waiting it has no effect, that is the
receipt of a signal is not remembered.)}

In practice two important additions to the basic signal mechanism are required:
one is the facility to check to see if a task is waiting to send a signal, and the other
is to be able to restrict the length of time which a task waits for a signal to occur.
In a real-time application it is rarely correct for a task to be committed to wait
indefinitely for an event to occur. The standard Wait (s) commits a task to an
indefinite wait.

6.12 DATA TRANSFER (THE PRODUCER-CONSUMER PROBLEM)

6.12.1 Data Transfer Without Synchronisation

RTOSs typically support two mechanisms for the transfer or sharing of data
between tasks: these are the poo! and the channel,

pool is used to hold data common to several tasks, for example tables of values
or parameters which tasks periodically consult or update. The write
operation on a pool is destructive and the read operation is non-destructive.

channel supports communication between producers and consumers of data. It
can contain one or more items of information. Writing to a channel adds
an item without changing items already in it. The read operation is
destructive in that it removes an item from the channel. A channel can
become empty and also, because in practice its capacity is finite, it can
become full.
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It is normal to create a large number of pools so as to limit the use of global
common data areas. To avoid the problem of two or more tasks accessing a pool
simultaneously mutual exclusion on pools is required. The most reliable form of
mutual exclusion for a pool is to embed the pool inside a monitor. Given that the
read operation does not change the data in a pool there is no need to restrict read
access to a pool to one task at a time.

Channels provide a direct communication link between tasks, normally on a
one-to-one basis. The communication is like a pipe down which successive
collections of items of data — messages — can pass. Normally they are implemented
so that they can contain several messages and so they act as-a buffer between the
tasks. One task is seen as the producer of information and the other as the
consumer. Because of the buffer function of the channel the producer and consumer
tasks can run asynchronously.

There are two basic implementation mechanisms for a channel:

e queue (linked list); and
e circular buffer.

The advantage of the queue is that the number of successive messages held in the
channel is not fixed. The length of the queue can grow, the only limit being
the amount of available memory. The disadvantage of the queue is that as the
length of the queue increases the access time, that is the time to add and remove
items from the queue, increases. For this reason and because it is not good practice
to have undefined limits on functions in real-time systems queues are rarely
used.

The circular buffer uses a fixed amount of memory, the size being defined by
the designer of the application. If the producer and consumer tasks run normally
they would typically add and remove items from the buffer alternately. If for sorme
reason one or the other is suspended for any length of time the buffer will either fill
up or empty. The tasks using the buffer have to check, as appropriate, for buffer
full and buffer empty conditions and suspend their operations until the empty or full
condition changes.

As an example let us consider an alarm scanning task which for a period of time
produces data at a rate much greater than that at which the logging task can print
it out. A buffer is needed to store the data until the consuming task is ready to take
it. The system is shown diagrammatically in Figure 6.32. We assume that the buffer
is bounded, that is of finite size, and that the operation of storing an item of data
in it is performed by the call :

Put (x)
and an item of data is removed by the call

Get (x?
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Figure 6.32 Input (a} and output {b) device model (from Young, Real-time Languages,
Ellis Horwood (1982)).

Since the buffer is of finite size it is necessary to know when it is full and when it
is empty. The following function calls are used:

Full — which returns the value true if the buffer is full;
Empty — which returns the value true if the buffer is empty.

Let us assume that the producer and consumer are formed by separate tasks which
share a common buffer area.
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EXAMPLE 6.8
Producer—Consumer Problem

(* Producer-consumer problem - solution 1%}
VAR commonBuffer : buffer;
TASK Producer;
VAR x:data;
BEGIN
LOCP
Produce(x);
WHILE Full DO
Wait
END (* while *);
Put(x);
END (* loop *);
END Producer;
TASK Consumer;
VAR x:data;
BEGIN
LOOP
WHILE Empty DO
Wait
END (* while *);
Get(x);
Consume{x);
END (* Loop *);
END Consumer

The producer operates in an endless cycle producing some item x and waiting until
the buffer is not full to place x in the buffer; the consumer also operates in an
andless cycle waiting until the buifer is not empty and removing item x from the
buffer.

The solution in Example 6.8 is not satisfactory for two reasons:

1. the Put¢x) and Get (x) are both operating on the same buffer and for
security of the data simultaneous access to the buffer cannot be allowed —
the mutual exclusion problem;

2. both the producer and the consumer use a ‘busy wait’ in order to deal with
the buffer full and buffer empty problem.

The first problem can be solved using the semaphore, with the operations secure and
release. The second problem can be solved by using the signal mechanism
described above,

Because of the need to test for empty and full and to suspend the task if one
or the other condition appertains then although transfer of a data item is not
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synchronised there is task synchronisation on the buffer full and buffer empty
conditions.
This is illustrated in Example 6.9.

EXAMPLE 6.9
Producer—Consumer Problem — Solution 2

(*

Data transfer problem-solution 2 using semaphores and

signals

*3

YAR commonBuffer : Abuffer;
bufferAccess : ABinarySemaphore;
naonfull, nonEmpty : Signal;

TASK Producer;

VAR x:data;

BEGIN
LOOP

Producei{x);

Secure{bufferAccess);

IF Full THEN
Release{bufferAccess);
WaitinonFull};
Secure(bufferAccess);

END (*if*);

Put(x);

Release(bufferAccess);

Send{nonEmpty);

END ("loop™);
END Producer;
TASK Consumer;
VAR x:data;
BEGIN

LooP

Secure(bufferAccess);

IF Empty THEN
Release(bufferAccess);
Wait(nonEmpty);
Secure{bufferAccess);

END (* if *);

Get(x):

Release(bufferAccess);

Send(nonFul l);

Consume(x);

END (*Loop™y;
END Consumer;
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In this example the critical code is enclosed between secure and release
operations but it is essential that the bufferAccess semaphore is released before
executing the Wait(nonFull) or Wait (nonEmpty) primitives. If this is not
done the system will deadlock. For example, if the Producer executes
Wait (nonFul L) while holding the access rights to the buffer then the buffer can
never become non-full since the only way it ¢an is for the Consumer 10 remove an
item of data, but the Consumer cannot gain access to it until it is released by the
Producer.

Both semaphores and signals can be generalised to allow a semaphore or a signal
variable to have any non-negative integer value — in this form they are sometimes
referred to as counting semaphores. '

6.12.2 Synchronisation With Data Transfer

There are two main forms of synchronisation invelving data transfer. The first
involves the producer task simply signalling to say that a message has been produced
and is waiting to be collected, and the second is to signal that a message is ready
and to wait for the consumer task to reach a point where the two tasks can exchange
the data.

The first method is simply an extension of the mechanism used in the example
in the previous section to signal that a channel was empty or full. Instead of
signalling these conditions a signal is sent each time a message is placed in the
channel. Either a generalised semaphore or signal that counts the number of sends
and waits, or a counter, has to be used. .

Two examples of buffers written in Modula-2 are shown in Figures 6.33
and 6.34.

6.13 LIVENESS

An important property of a multi-tasking real-time system is /iveness. A system {(a
set of tasks) is said to possess liveness if it is free from

livelock,
deadlock, and
indefinite postponement.

Livelock is the condition under which the tasks requiring mutually exclusive
access to a set of resources both enter busy wait routines but neither can get out of
the busy wait because they are waiting for each other. The CPU appears to be doing
useful work and hence the term livelock.

Deadlock is the condition in which a set of tasks are in a state such that it is
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IMPLEMENTATION MODULE Buffer;
(t
Title : Implementationofa buffer using amonitor
File : bufferti.mod
.™
FROM Monitor IMPORT
manitorPriority;
FROM Semaphores IMPORT
Claim, InitSemaphore, Retlease, Semaphore;
(* following is required for display of contents *)
FROM Ansi IMPORT
WriteCh;
(*endofdisplay *)
CONST moduleName="bufferT1"';

MODULE Buffern [monitarPriorityl;
IMPORT
Claim, InitSemaphore, Release, Semaphore, WriteCh;
EXPORT Put, Get;
CONST
nMax=10;
YAR
nFree, nTaken : Semaphore;
in, out : [1..nMax];
b: ARRAY [1..nMax] OF CHAR;
(*follouingvariablesarerequiredonlyfordemonstrationpurposes*)
row, col : CARDINAL;
PROCEDURE Put(ch : CHAR);
BEGIN
Claimi{nfree);
blinl:=ch;
in:=in MOD nMax+1;
Uritech(ch,rou.col4¥n)(*displaycurposesonly*):
Release(nTaken)
END Put;
PROCEDURE Get (VAR ch:CHAR);
BEGIN
Ctaim{nTaken);
ch:=bloutl;
out:i=out MOD nMax+1;
WriteCh(' ', row, col+out) (*display purposes *);
Release(nFree)
END Get;
BEGIN
row:=15; col:=20 (" initialisedisplay part *);
in:=1; out:=1;
lnitSemaphore(nFree, nMax);
InitSemaphore(nTaken,D);
END BufferM;
END Buffer,

Figure 6.33 IMPLEMENTATION MODULE of a buffer using a monitor.
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IMPLEMENTATION MODULE Buffer;
(*
Title : Implementationof abuffer using a semaphore
File : buffert2.mod
*)
FROM Semaphores IMPORT
Claim, InitSemaphare, Release, Semaphore;
(* following is required for disptay of contents *}
FROM Ansi IMPORT
WriteCh;
(* end of display *)
CONST moduleName="bufferT2";
CONST
nMax=10;
VAR
nFree, nTaken, inPut, inGet : Semaphore;
in, out : [1..nMax];
b: ARRAY [1..nMax) OF CHAR;
(* following variables are required only for demonstration
row, col 3 CARDINAL;
PROCEDURE Put{ch : CHAR);
BEGIN
Claim(inPut);
tlLaiminfreel;
plinl:=ch;
inz=in MOD nMax+l;
WriteCh{ch, row, cot+in) (* display purposes only *);
Release(nTaken);
Release(inPut);
END Put;
PROCEDURE Get {VAR ch:CHAR);
BEGIN
Claim{inGet);
Claim(nTaken);
ch:=bloutl;
out:=out MCD nMax+1;
WriteCh(' ', row, col+out) (*display purposes *);
Release(nFree);
Release{inGet)};
END Get;
BEGIN
row:=15; col:=20 (* initialisedisplay part *):
in:=1; out:=1;
InitSemaphore{nfree, nMax);
InitSemaphore{nTaken, 0);
InitSemaphore{inPut, 1);
InitSemaphore(inGet, 1);
END Buffer.

269

purposes

Figure 6.34 IMPLEMENTATION MODULE of a buffer using a semaphore.

*)
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impossible for any of them to proceed. The CPU is free but there are no tasks that
are ready to run. As an example of how deadlock can occur consider the following.

Suppose task A has acquired exclusive use of resource X and now requests
resource Y, but between A acquiring X and requesting Y, task B has
obtained exclusive use of Y and has requested use of X. Neither task can
proceed, since A is holding X and waiting for Y and B is holding Y and
waiting for X,

The detection of deadlock or the provision of resource sharing commands in such
a way as to avoid deadlock is the responsibility of the operating system (see Lister
(1979, pp. 94-7) for a discussion of deadlock avoidance and detection mechanisms).

Indefinite postponement is the condition that occurs when a task is unable to
gain access to a resource because some other task always gains access ahead of it.

6.14 MINIMUM OPERATING SYSTEM KERNEL

As mentioned in the introduction there has been considerable interest in recent years
in the idea of providing a minimum kernel of RTOS support mechanisms and
constructing the required additional mechanisms for a particular application or
group of applications. One possible set of functions and primitives for RTOS is:

Functions:

1. A clock interrupt procedure that decrements a time count for relevant tasks.

2. A basic task handling and context switching mechanism that will support the
moving of tasks between queues and the formation of task queues.

3. Primitive device routines (including real-time clock support).

Primitives:;

WAIT for some condition (including release of exclusive access rights).
SIGNAL condition and thus release one (or all) tasks waiting on the condition.
ACQUIRE exclusive rights to a resource (option — specify a time-out condition).
RELEASE exclusive rights to a resource.

DELAY task for a specified time.

CYCLE task, that is suspend until the end of its specified cyclic period.

6.15 EXAMPLE OF CREATING AN RTOS BASED ON A MODULA-2
KERNEL

The standard module Processes suggested by Wirth (1986) and supplied by most
systems is not all that versatile. Many alternative versions offering a wider range of
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facilities have been developed. An example of one such system is described below.
It was developed by Roger Henry, of Nottingham University.

The lowest-level module is Processes (a replacement for the Wirth module
Processes) which provides the procedures and functions

Cp — return current process identity

Disable — disable a given process

Enable — make a given task runnable

MinWksp — return the minimum workspace size for task
NewProcess — create a new task

Priority0f — return the priority of a task

SuspendMe - suspend the calling task

SuspendUntilInterrupt — suspend the calling task until a specific
interrupt occurs.

The relationship between the procedures and the state of the tasks is shown in Figure
6.35 — NewProcess is used to inform Processes of the existence of a task, but
before it can be run it must be made runnable by a cali to Enable. In the call
NewProcess atask is allocated a priority (an integer value — the range depending
on the implementation) and the runnable task with the highest priority becomes the
running task. A running task can call Disable which will cause a named runnable
task to be changed to existent (non-runnable). If the named task is not runnable the
call wilt be ignored; to make itself non-runnable the running task uses the call
SuspendMe. A running task may also suspend itself to wait for a hardware

Existent
non-
runnable

NewProcess

Non-
existent

Figure 6.35 Task states and transitions for a Modula-2 kernel.
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interrupt by using the call SuspendUntil Interrupt in which case it will not
become runnable until the specified hardware interrupt occurs and is accepted.

For simple applications a high-level module, Scheduler, is provided which
has two procedures:

StartProcess — equivalent of NewProcess and Enable, it makes a
task known to Processes and makes it runnable;
StopMe — stops the current task.

The separate modules of Signals, Semaphores and Timing allow the tasks
started by Scheduler to synchronise and to run at specified time intervals.

The module Signals provides the standard operafions on signals
(Inftialise, Wait and Send - the names used are InitSignal,
SendSignal and AwaitSignal) but in addition two further operations are
supported:

Awaited — returns true value if at least one task is waiting for the
SendSignal operation;

SentWithin — the caller will only wait for a specified length of time; the
function returns a true value if the signal was sent within the specified
time.

The module Semaphore supports the standard semaphore operations ~ the names
used are InitSemaphore, Claim and Retease.

The module Timing enables users to operate in absolute and relative time
intervals. Absolute time begins when the Timi ng module is initialised and one
value of absolute time can be said to be earlier or later than another. The difference
between two values of absolute time — a time interval — is said to be relative time
and one interval can be said to be longer or shorter than another.

Time — both absolute and relative — is measured in units of seconds and ticks.
The number of ticks in a second is implementation defined (it depends upon the
system clock used) and its value is returned by the function TicksPerSecond.
The current time (absolute) can be found using the procedure TellTime. Two
procedures are provided to enable tasks to wait for specified times:

DelayFor — the task waits for a specified time interval
DelayUntil - the task waits until a specified absolute time.

In both cases the calling task is suspended until either the time interval has elapsed
or the absolute time is reached; the task is then made runnable — there is no
guarantee that the task will run immediately on attaining the specified condition
since Processes will choose the task with the highest priority.

In calculating absolute times or time intervals the value of time in seconds and
ticks has to be manipulated. To support such operations the module Time0Ops
provides the following procedures:

IncTime — increase a time value by a given interval
Inclnterval — increase an interval value by a given interval
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DecTime — decrease a time value by a given interval
pecInterval — decrease an interval value by a given interval
piffTimes — subtract second time from the first time
pitfIntervals — subtract second interval from first interval
CompareTimes — compare first time with second time
CompareIntervals — compare first interval with second interval.

A simple example of the use of the RTOS kernel facilities is given in Figure 6.36.
Two tasks, the task forming the main program and the task formed by procedure

MODULE TwoTasks;

(t
Title : Example of two tasks synchronising using signals
File : &b1 twotasks.mod
*
)

FROM Scheduler IMPORT
Processld, Priority, StartProcess, StopMe;

FROM Signals IMPQORT
AwaitSignal, SendSignal, InitSignal, Signal;

FROM InOut IMPORT
WriteString, WriteLn;

CONST

priority=2;
worksp=600;
YAR

messageSent : Signal;
count : CARDINAL;
taskTwolId : ProcessId;

PROCEDURE TaskTwo;
BEGIN
LOOP
AuaitSignal(messageSent):
WriteString(' message received by task two');
Writeln
END (* Loop ™);

END TaskTwo;

BEGIN (* body of program forms task 1 *)
InitSignal(messageSent);
StartProcess(TaskTwo, priority, worksp, taskTwold);
FOR count:=1T0 10 b0
WriteString(*Sending message');
sendSignal (messageSent)
END (* far *);

END TwoTasks.

Figure 6.36 Two tasks synchronised by using signals.
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TaskTwo, are run alternately, synchronised by the use of the signal
messageSent. The output is ten lines of ‘Sending message’ — output by the
main task — and ‘message received by task two’ — output by TaskTwo. TaskTwo
is started with a priority of level 2 by the use of the procedure
Scheduler.StartProcess. The main body of the program is automatically
run at priority level 0,

Some of the features of the RTOS kernel can be explored by using the example
moyamshownh:ﬂgmtﬁj?.Twotmk&TaskAandTaskB,mecmamd.TaskA
prints out on the screen a number of rows of the letter A; the number is specified
in the constant numberOflines. Taskg prints out a number of rows of the

MODULE RTS3;

('
Title : Demonstrationof resource sharing
File : sbl: RTS3.mod
2 ]
)

FROM InCut [MPORT
Write, Writeln, WriteString;

FROM Semaphores IMPORT .
InitSemaphore, Semaphore, Claim, Release;

FROM Scheduler IMPORT
Processld, Priority, StartProcess, StopMe;

FROM Timing IMPQRT
DelayFor, DelayUntil, Intervai, TellTime, Time, TicksPerSecond;

CONST moduleName="RTS3";
numberOfLinesz5;
VAR

screen : Semaphore;
endA, endB : BOOLEAN;

PROCEDURE TaskA;
CONST ch="a";
VAR
T,i: CARDINAL;
delayA : Interva!l;
BEGIN
11205 j:=0; delayA.secs:=0; detayA.ticks:=1;
LOOP
Claim(screen); (* omit inversions 1 and 2 *)
FOR i:=1T0O 79 pO
Writelch);
DelayFor(delayA) (* omit in version 1 *)
END (* for *);
Writeln;
Release{screen); (* omit in versions tand 2 %)
INCCj);
IF j>numberOfLines THEN
EXIT
END (* if *):
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END ¢* Loop *);
endA:=TRUE;
StopMe;
END Taskh;
PROCEDURE TaskB;
CONST ch='8";
VAR
i, ¢ CARDINAL;
delayd : Interval;
BEGIN
j:=0; j:=0; delayB.secs:=0; delayB.ticks:=1;
LOOP
Claim{screen); (*omit in versions 1 and 2 *)
FOR i:21 7079 DO
Write(ch);
pelayFor(delayB); {(* omit in version 1%}
END (* for *);
WritelLn;
Release{screen); ¢* omit inversions 1 and 2™)
INCCj3;
IF j>number0flines THEN
EXIT
END (% if *);

END (* Loop ™);
endB:=TRUE;
StopMe;

END TaskB;

CONST
priorityA=1;
priorityB=1;
wkspS5izeA=1000;
wkspSizep=1000;

VAR

taskAld, task8ld : Processld;
BEGIN
HriteString(moduleName):
Writeln;

endA:=FALSE; endB:=FALSE;
InitSemaphore(screen, 1);

startProcess(Taskh, priorityA, wkspSized, taskAld);
startProcess{TaskB, priorityB, wkspSizeB, taskBId);

LOOP

(* I1dle process *)

IF endA AND endB THEN

EXIT

END (* if ");

END (* toop *};

Writeln;
WriteString('Programend');
END RTS3.

]
—

Figure 6.37 Example showing resource sharing.

275
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letter 8. The display which is obtained on the screen depends on the way the tasks
are scheduled and whether the tasks are given exclusive access to the screen. By
compiling the module in version 1 form (not using the semaphore and leaving out
the DelayFor calls), the scheduler treats the two tasks as coroutines. Hence
TaskA, which is started first, gains control and runs to completion; only then does
Task8 run. The result of this is that first several rows of As are displayed on the
screen followed by several rows of Bs. The reason for this behaviour is that the
scheduler continues to run a task until either a higher-priority task wishes to run or
until the running task suspends or ends. Introducing the delayFor statements to
form version 2 of the program causes the two tasks to run alternately giving an
alternating sequence of As and Bs. You are invited to work out what the output will
be if the Claim(screen) and Release (sc reen) statements are included.
The creation of modules for specific purposes is in keeping with the Modula-2
philosophy. The aim is that the core language should remain fixed and standard and
that any extensions required for special purposes should be provided in the form of
library modules. It should be noted that all the inputfoutput, file handling and other
operations are not handled as part of the language, but by standard procedures
imported from modules which are assumed to be provided as part of the system.

6.16 SUMMARY

In this chapter we have concentrated on describing the features to be found in
traditional operating systems. Such operating systems are usually specific to a
particular computer, or range of computers. Examples are the Digital Equipment
Corporation’s RT/11 and RSX/11 operating systems for the PDP-11 series; the Data
General RTOS and RDOS for the Nova range; and more recently RMX-80 for the
Intel 8080 range and OS-9 for the Motorola 68X XXX series.

The advantage of many of the traditional operating systems is their wide user
base and the fact that they have seen extensive use in control applications. There
has, however, been a tendency for the size of the operating systems to increase with
each successive upgrade and it is often difficult to create small subsets for a
particular application. Another disadvantage with many is that access to the system
from high-level languages is very restricted and the addition of new devices normally
requires hardware drivers to be written in assembler.

The development of the MASCOT {see Chapter 9) environment represents one
way in which some of the problems of lack of standardisation and difficulty of
accessing operating system functions have been addressed. A similar approach has
been taken by Baker and Scallon (1986) with the Rex architecture. As with
MASCOT the Rex system presents the user with a virtual machine which hides the
details of the operating system and the hardware. The detailed procedures required
for carrying out the various functions of the application program are written in a
conventional language and compiled using a standard compiler. A separate language
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is used to describe how the components of the system should be connected together
to form a multi-tasking system and to describe how the data sets can be shared. At
this stage decisions on the number of processors to be used are made.

The system has been designed for use in the aerospace industry and the problem
of overheads involved in context switching has been carefully considered. Individual
processes are short procedures which once started are not interrupted; they are
considered to be the equivalent of a single assembler instruction. The allocation of
storage for data and code for processes is static.

EXERCISES

6.1 Draw up a list of functions that you would expect to find in a real-time operating
system. Identify the functions which are essential for a real-time system,

6.2 Why is it advantageous to treat a computer systeém as a virtual machine?

6.3 Discuss the advantages and disadvantages of using
(a) fixed table
(b) linked list
methods for holding task descriptors in a multi-tasking real-time operating system.

6.4 A range of real-time operating systems are available with different memory allocation
strategies. The strategies range from permanently memory-resident tasks with no task
swapping to fully dynamic memory allocation. Discuss the advantages and
disadvantages of each type of strategy and give examples of applications for which
each is most suited.

6.5 What are the major differences in requirements between a multi-user operating system
and a multi-tasking operating system?

6.6 What is meant by context switching and why is it required?

6.7 What is the difference between static and dynamic priorities? Under what
circumstances can the use of dynamic priorities be justified?

6.8 Choosing the basic clock interval (tick) is an important decision in setting up an
RTOS. Why is this decision difficult and what factors need to be considered when
choosing the clock interval?

6.9 List the minimum set of operations that you think a reai-time operating system kernel
needs to support.
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Design of Real-time Systems —
General Introduction

As we said at the end of Chapter 4, there is much more to designing .and
implementing computer control systems than simply programming the control
algorithm. In this chapter we first give an outline of a general approach to the design
of computer-based systems (it actually applies to all engineering systems). We will
then consider, as an example, the hot-air blower system described in Chapter 1. In
designing the software structure we illustrate three approaches:

® single task;
® foreground/background; and
& multi-tasking.

We end the chapter by considering in detail some of the problems that arise when

using a multi-tasking approach. We deal with both multi-tasking on a single

computer and the case in which the tasks are distributed across several computers.
The objectives are:

¢ To show how to approach the planning and design of a computer-based
system.

® To illustrate the basic approaches for the top level design of real-time
software.

@ To illustrate some of the problems associated with real-time, multi-tasking
software,

7.1 INTRODUCTION

The approach to the design of real-time computer systems is no different in outline
from that required for any computer-based system or indeed most engineering
systems. The work can be divided into two main sections:

® the planning phase; and
@& the development phase.

The planning phase is illustrated in Figure 7.1. It is concerned with interpreting user
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